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Synopsis
It is shown that the energy-momentum complex T-; introduced by Møller 

into the theory of general relativity is uniquely determined, when taken as a 
function of the metric tensor and its derivatives of the first and second orders, 
by two transformation requirements: 1) is an affine tensor density (of weight 
one) so that the total energy and momentum of a closed system are transformed 
as a vector in linear (affine) transformations, just like the energy and momentum 
of a free particle; 2) Tj is a scalar density in arbitrary spatial transformations so 
that the total energy in a volume of space is independent of the system of spatial 
coordinates used. Further it is shown that in empty space it is possible, in ac­
cordance with the principle of equivalence, to introduce coordinates along a 
geodesic such that the gravitational energy-momentum complex vanishes along 
the geodesic.



1. Introduction

When Einstein introduced the law of conservation of energy and 
momentum into the theory of general relativity*  ’, several objections were 
raised against it. These arose from the fact that the energy-momentum com­
ponents tk of the gravitational field did not form a tensor, whereas the com­
ponents 7’f of matter did. It was, e. g., shown by Bauer that for an inertial 
system in which no matter was present, i. e. no gravitational field, the in­
troduction of polar instead of Cartesian space coordinates into the metric 
of special relativity led to components different from zero. In particular, 
the total energy turned out to be infinite. Levi-Civita and Lorentz proposed 
an alternative expression for the energy-momentum components of the 

gravitational field, viz. the tensor - Gk, where G*  = Rk - - ôkR. This pro­

posal was rejected by Einstein on the grounds that, since Tk + = 0

always and everywhere, according to the field equations, the total energy 
of a system is zero from the start, and therefore this law of conservation 
does not require the continued existence of the system. A material system 
can disintegrate into nothing without leaving any trace(2).

Finally Einstein*3’ showed that his formulation of the law of con­
servation of energy and momentum led to an unambiguous and satisfactory 
definition of the total energy and momentum of a closed system, independent 
of the choice of coordinates inside a surface surrounding the system. How­
ever, no unambiguous definition could be given of the energy or momentum 
of a part of a closed system. Therefore it was generally accepted that the 
localization of energy and momentum had no meaning in the theory of 
general relativity.

In recent papers, Møller*4,5’6’ has derived and discussed extensively 
a new energy-momentum complex in general relativity. (The term “com­
plex” is used, as by Lorentz, to denote a quantity which is not trans­
formed as a tensor in arbitrary space-time transformations.) In the first 
paper, “On the Localization of the Energy of a Physical System in the 
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General Theory of Relativity”, it was pointed out that the 44-component of 
Einstein’s energy-momentum complex was not transformed as a scalar 
density even in purely spatial transformations. It was therefore not suitable 
for defining an energy density. This was the reason for the above-mentioned 
absurd result derived by Bauer. Using the fact that the energy-momentum 
complex is not uniquely determined by the requirement that its ordinary 
divergence vanishes, Møller succeeded in deriving a complex T- having 
all the satisfactory features of Einstein’s energy-momentum complex, but 
such that T4 and T*  (x= 1, 2, 3) behaved like scalar and 3-vector densities, 
respectively, in arbitrary spatial transformations. With this new expression 
for T*,  the energy of a part of a closed system is invariant in spatial trans­
formations.

As was shown by Møller*6, 7), CT*  can be derived from a variational 
principle, where the quantity to be varied is the curvature scalar density 
Si = [/ - g R. However, it is possible to define in the theory of general relativity, 
as in any generally covariant theory where the field equations can be derived 
from a variational principle, an infinite number of quantities which satisfy 
conservation Iaws(8). It is desirable to select among these a unique, physically 
significant quantity describing the energy and momentum of the field. The 
question of the uniqueness of Moller’s energy-momentum complex T-' has 
been considered by himself in another paper(5), where he shows that T*  
is determined uniquely by the following three conditions:

1) is an affine tensor density.
2) T4, T4 (x = 1, 2, 3) are scalar and 3-vector densities in arbitrary spatial 

transformations.
3) The superpotential from which T- is derived, depends on
first-order derivatives of the metric tensor up to the second degree, and docs 
not contain higher derivatives.

T*  may be separated into a matter part, j/ — g T*,  and a gravitational part, 
j/-gT*.  According to the principle of equivalence it should be possible to 
eliminate the gravitational field, and thus make vanish, at any point by 
a suitable choice of coordinate systems. Since depends on the second 
derivatives of the metric tensor, it will not vanish in all coordinate systems 
which are geodesic, i. e. in Avhich gik,i = 0. Møller has shown, however, 
that t*  can be made to vanish at any point where no matter is present, in 
a wide class of geodesic coordinate systems, viz. those which are “locally 
normal” al the point(6).

* A comma denotes partial and a semicolon covariant differentiation.
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The present paper falls into two main parts. The first part deals with 
the uniqueness of Moller’s energy-momentum complex. After considering 
conservation laws and the transformation properties of the energy-momentum 
complex we show that the complex T*,  satisfying a conservation law and 
depending on the metric tensor and its derivatives of the first and second 
orders, is uniquely determined by conditions 1) and 2) above, i. e. that CT*  
is an affine tensor density and T4, T*  are scalar and vector densities in 
spatial transformations. The restriction on the degree of the first-order 
derivatives of gik in can be dropped. Derivatives of gik higher than the 
second are excluded from T*,  and therefore derivatives higher than the first 
from få1, since the field equations themselves are restricted to the second 
order. It is also easily seen that it is impossible to form a quantity T**  such 
that T44 is a scalar density in spatial transformations.

In the second part it is shown that along a geodesic one can introduce 
coordinate systems such that, with no matter present, the gravitational energy­
momentum complex vanishes along the geodesic. This is an extension of 
Moller’s result for a point where no matter is present. It shows that an 
observer falling freely in a gravitational field can introduce a system of 
coordinates such that the effects of the gravitational field are eliminated.

2. Conservation Laws and Transformation Properties

The conservation laws of energy and momentum are originally integral 
laws. For a closed system they state that a certain well-defined space integral 
over the system at a certain time, called its energy or momentum, remains 
constant in time :

T dx1 dx2 dx3 = 0. ( 1 )

For a part of a closed system the conservation laws state that the rate 
of decrease of, say, the energy in a space volume V at a certain time is 
equal to the flux of energy through the boundary surface S of V:

- ( T dx1 dx2dx2 - jj g» dSx. (■>)

It is, however, more convenient to have the conservation laws in differ­
ential form. The differential conservation law equivalent to (2) is, by Gauss’ 
theorem,
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d T
d t + dxK

In special relativity the differential 
momentum are

= 0. (3)

conservation laws for energy and

; = 0, (4)

where Tk is the energy-momentum tensor of matter. The natural generali­
zation of (4) in general relativity is obtained by equating the covariant 
divergence of the tensor 7*  to zero :

(5)

As is well known, this equation does not lead to integral conservation 
laws of the form (1) or (2), i. e., there is no conservation law for matter 
alone. Only an equation of the form (4) is equivalent to integral conservation 
laws. It is possible, however, to bring (5) into the required form by means 
of the field equations. One then obtains the conservation laws for matter 
and gravitational field in a differential form:

where

(6)

(7)

Here Tk is the energy-momentum tensor of matter, and tk refers to the 
gravitational field. Of course cTk, and therefore tk, are not uniquely deter­
mined in this way, for a quantity with a vanishing divergence can be added 
to T*.  By means of the field equations the matter variables can be eliminated 
and Tf expressed solely in terms of the metric tensor and its derivatives. 
As noted in section 1, it is natural to exclude derivatives higher than the 
second from T*,  but there is still a wide choice of expressions for Tf, which 
it is desirable to restrict.

The principle of general relativity requires the validity of equation (6) 
in all systems of coordinates. This puts restrictions on the transformation 
properties of T*.  It is clear, e. g. from eq. (5), that cannot be a tensor 
density (of weight one) in arbitrary space-time transformations, but only 
in linear (affine) space-time transformations, i. e. it can be an affine ten-
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sor density. Further it can be shown that in arbitrary spatial transfor­
mations, (xx), x'4 = x4, (t, x = 1, 2, 3), T4 and T*  can be scalar
and tensor densities, whereas T4 and T*  cannot be vector and tensor den­
sities.

Turning now to lhe question of determining physically reasonable trans­
formation properties of T|, we first consider the total energy and momentum 
of a closed system

(8)

It is natural to require that this is transformed like the energy and momentum 
of a free particle, i. e. as a vector, in linear transformations. This means 
that T*  must be an affine tensor density (of weight one).

Now consider the gravitational energy in a small, or infinitesimal, region. 
It is clear that this energy will depend on the coordinate system used. Ac­
cording to the principle of equivalence it is possible to introduce a coordinate 
system in which the gravitational field vanishes. In such a system all the 
components of the gravitational energy-momentum complex, in particular 
the energy density, should vanish. The elimination of the gravitational field 
requires the introduction of an accelerated (freely falling) frame of reference, 
and hence the energy-momentum complex cannot be a tensor density in 
transformations to such a frame. The transformations involve time, but not 
linearly; so they are not affine. Thus it follows from the principle of equi­
valence that T*  cannot be a tensor density in arbitrary space-time trans­
formations, whereas it can be an affine tensor density.

Within a given frame of reference, an arbitrary change in the spatial 
coordinates only will not eliminate or affect the gravitational field. It is 
then natural to require that the gravitational energy in a spatial region be 
invariant in arbitrary spatial transformations x'4 = f4 (x*),  x'4 = x4, (t, x = 
1, 2, 3), which simply amount to a renaming of the points of reference 
(points with constant spatial coordinates) without any change of the rate or 
setting of the coordinate clocks. This is the case if behaves like a scalar 
density in such transformations. Further, if T4 is a 3-vector density, the 
integrals in (2) with T = *T 4 and = cT% are invariant in spatial trans­
formations. In that case one may talk of conservation of energy in any 
region of space within a given frame of reference, regardless of the system 
of spatial coordinates used.

The situation is different as regards the momentum. T4, T*  cannot be 
vector and tensor densities in spatial transformations. Even if they were, 
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the corresponding integrals in equation (2) would not have simple trans­
formation properties in such transformations (see reference 4, § 4).

Thus it is possible, within any given frame of reference, to give an 
unambiguous interpretation, i. e. one independent of the choice of spatial 
coordinates, of the conservation of the energy in any region of space, provided 
T4 and have the above-mentioned properties, but not of the conservation 
of the momentum.

On the basis of these considerations we may set up the following trans­
formation requirements for T*,  consistent with eq. (6) being valid in all 
coordinate systems:

1) T*  must be an affine tensor density;
2) T4, T4 must be scalar and vector densities in spatial transformations

x/f = x'4 = x4, (t, x = 1, 2, 3).

Now, equation (6) is satisfied identically in all coordinate systems if one 
writes

where
(9)

(10)

With 7“* restricted to second derivatives, must be restricted to first- 
order derivatives of the metric tensor.

Then 7*  will have the required transformation properties if

1) /* z is an affine tensor density,
2) %4^, are vector and tensor densities in spatial transformations (x, z = 

1, 2, 3).

We shall now show that the superpotential få1 formed from the metric 
tensor and its first-order derivatives is uniquely determined by these trans­
formation requirements. Hence 7"*  is uniquely determined by the corres­
ponding r e quirem e nts.

3. Spatially Covariant Expressions Containing First-Order Derivatives 
of the Metric Tensor

Consider the problem of forming a rational integral function of the 
metric tensor and its first-order derivatives which is covariant in the spatial 
transformalion

x'z = f (xx), x'4 = x4, (t, x = 1, 2, 3). (11)
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'Phe transformation coefficients for (11) are

(12)

The first-order derivatives of the metric tensor can be written in terms 
of the Christoffel symbols of the second kind and the metric tensor as
follows :

gtj,k gimrjk + gimrik 1 (13)
___ nim pj _ jm pi

g ’ k g 1 mk g 1 mk • J

Any expression containing the first-order derivatives can therefore be written 
in terms of the Christoffel symbols ami the metric tensor. The problem is 
then to form a spatially covariant expression in terms of gik, gik and rkl.

For an arbitrary space-time transformation the transformation law for
4z is(9)

+ (14)

Thus rkl is not a tensor in general, because of the second term on the 
right-hand side. This term vanishes when the transformations are linear, 
i. e. Fkl is an affine tensor. For the spatial transformation (11) it is easily 
seen that the extra term vanishes if one of the indices i, k, I is equal to 4.
Therefore

^ = ^4 (15)

are tensors in spatial transformations. Any expression containing only these 
symbols (and the metric tensor) will be spatially covariant. This is not the 
case with a general expression in Fkl, but it is possible that some particular 
combination of rkl will be spatially covariant. For that to occur the extra 
non-tensor terms in the transformation law for the expression, arising from 
the extra term in (13), must somehow be cancelled. We shall now show 
that this is impossible.

Consider first an expression linear in rkl, e. g. with a term of the type

ngmngrs> (iß)

where z, Æ, Z + 4. The transformation law for this term is
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9yz ■
i " t

+ a{ a*,î
(17)

All the terms are symmetric in the same pairs ol’ indices, (k, I), (in, n) and 
(r, s'), and in no others. The only nontrivial way to cancel the extra term 
is to subtract a corresponding expression where the indices in which the term 
is symmetric are interchanged. Since all the terms of (17) are symmetric 
in the same pairs of indices, they would all be cancelled by such a sub­
traction, and nothing would remain.

For an expression containing products of F^ the extra, non-tensor term 
in (14) would lead to several extra terms in the transformation law, similar 
to that in (17). Since, however, all the terms would be symmetric in the 
same pairs of indices, and in those only, it would be impossible to cancel 
the extra non-tensor terms without cancelling all the others as well.

The only way to obtain a covariant expression is to make the extra term 
in (14) vanish. For an arbitrary spatial transformation (11) this means that 
only the Christoffel symbols given in (15) can occur in the expression.

4. The Uniqueness of the Superpotential

The considerations in section 2 led to the following requirements for the 
transformation properties of the superpotential depending on the metric 
tensor and its first-order derivatives :

1) x™ must be an affine tensor density;
2) must be vector and tensor densities in arbitrary spatial trans­

formations.

Since Xtl 2 is to be a density (of weight one), it can be written

(18) 

where X,1 is an affine tensor and A4 a vector in spatial transformations. 
Being an affine tensor, X™ must be a rational integral function of the metric 
tensor and its first-order derivatives.

In a spatially covariant expression for X%1 there can only be one upper 
and one lower index equal to 4 since X%1 is associated with an affine tensor 
of rank three, A"fz.

A spatially covariant expression for X%1, antisymmetric in 4 and I, must 
be formed of the following quantities, and these only:
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m > 9mn 9 94 n (19)

ni and n representing dummy indices, g'11 cannot occur since the expression 
is to be antisymmetric in 4 and /, and ô”, ô^, b™ would simply mean re­
placing a dummy index by 4 or another dummy index.

It is not possible to form 1 from gilc, gik, bk alone, for a quantity formed 
from these would always have the same number of upper and lower indices. 
Every term must therefore have one or more Fkl. Terms of the third or a 
higher degree in rkl cannot occur as they would have three or more indices 
equal to 4. This excludes, according to section 3, terms of the third and 
higher degrees in the first-order derivatives. Terms of the second degree in 

cannot occur since it is impossible to form from a product of two 
the metric tensor, and the Kronecker symbol, a quantity with one more 
index on top than at bottom. This excludes terms of the second degree in 
the first-order derivatives. The only remaining possibility is to have terms 
linear in the rkl, i. e. terms of the first degree in the first-order derivatives.

To form the quantitv
X4,--A'‘4 (20)

from the quantities in (19) and so that it is linear in the Fkl, consider first 
the use of r^n with in, n dummy indices. Interchange of 4 and I in ac­
cordance with (20) would give Flmn, which is not covariant. Hence the only 
P’s which can occur are F%m, F%m and F\m. This, however, excludes gAn, 
Ô4 and <5^ since there can be only one lower index equal to 4. The quantities 
left to form X%1 are then

rn.m, r}m, r\m, 9mn, 9mn, 9*n, gln. (21)

The possible positions for 4 and I as upper indices are given by

(22)

Matching the dummy indices ni, n, r, s in all possible ways, one finds three
expressions :

(23)

The last one is symmetric in 4 and / and therefore cannot occur in X%1.
From the other two one can form only one antisymmetric quantity

X441-a(71„/’»-r44ros,’“)> (24)

which is thus uniquely determined, apart from an arbitrary constant.



12 Nr. 6

It is clear that the quantity

_ / /U Jtm_ pHW4 — a 4m g 1 Am y ) (25)

is spatially covariant, as required.
Expressing the Christoffel symbols in terms of first-order derivatives of

the metric tensor, one finds

X44i = « (9An,m-9Am, (26)

The superpotential %kl is then given by

„,kl n\/ n ( F1 nkm FkXi (l K ~ 9 ( 1 im 9 ~ 1 im 9 ) (27 a)
or

Xi1 = fl j/-9 (.9 in, m - 9im, n) 9^ 9^- (27 b)

This is just the expression derived by Møllen, and it is thus seen to be 
uniquely determined by the two transformation properties given at the 
beginning of this section. It follows trom Moller s work that the constant 
a is given by

o = 1/x = c4/8 Tik, (28)

where k is the Newtonian gravitational constant.
It is now easily seen that it is impossible to form an energy-momentum 

complex Tik such that T44 is a scalar density in spatial transformations. To 
do so one would put where %ikl = —/î?fcand /44Z must be a vector
density in spatial transformations. To form this latter quantity one would
have to use

r4J mn > 9mn (29)

It is not possible to form it from gmn and gmn alone, nor from products of 
two since there must be three free upper indices. Products of three or 
more would give too many 4’s, so only a linear expression in P^ re­
mains. Matching indices in

(30)

one finds the following expressions:

(31)

The index 4 in cannot be replaced by / in the process of forming
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^4U = -/44Z since rlmn is not spatially covariant. The expressions in (31) 
are symmetric in the remaining 4 and I so that an expression antisymmetric 
in 4 and / cannot be formed from them. Thus it is impossible to form the 
required quantity /44 .

5. The Energy-Momentum Complex of the Gravitational Field

The energy-momentum complex of matter and gravitational field, T*,  
can be expressed solely in terms of the metric tensor and its first- and second- 
order derivatives. By means of equations (9), (27) and (28) T*  may be 
written

or
’ I ~•> s'1”9'“ !, ■ (32 b)

T*  can be split up into a matter part, /- </ T*,  and a gravitational part, 
|/-gt*,  as in equation (7),

Tf = 1/^(7“?+ /*).  (7)

This is, however, rather artificial and arbitrary since T*  can be expressed 
in terms of the metric tensor and its derivatives alone, the matter variables 
being eliminated entirely from the expression. Further, and are not 
conserved separately in a general coordinate system ; only their sum is con­
served. In general one has from (6), (7) and (5)

fc = ~(]/-gTï\ k = (33)

It is possible to introduce at any given point a geodesic coordinate system 
such that gik l = 0 and therefore also Fkl = 0 at the point. As was first shown 
by Fermi, it is also possible, for any open curve in space-time, to introduce 
coordinate systems such that gikti = 0 at every point of the curve. At points 
where t = 0, it is reasonable to talk of a matter part and a gravitational 
part of T? since these are conserved separately at such points, i. e.

Møller has shown<6) that t\ can be written

(34)
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(35)

where
„îfc / rl k rk<„lm +nlmrn \ rm rk nlnxti^Uil) -Uil) ~1il\9,m + 9 1mn) Jin1lm9 (36)

with
(^)’m = (^),nf/nW (37)

At the origin of a geodesic coordinate system, (36) is reduced to

(38)

By means of (37) and the relation

pi _ ,,ir I1
1 kl ~ 9 1 r, kl (39)

(38) may be written

(40)

Since this expression depends on second-order derivatives of the metric
tensor, t*  will in general not vanish at the origin of a geodesic system of 
coordinates.

According to the principle of equivalence it should be possible, however, 
to eliminate the effects of the gravitational field at a point by a suitable 
choice of coordinates. Møller has shown(6) that where no matter is present, 
i. e. where R = 0, does vanish at the origin in a large class of geodesic 
coordinate systems, the so-called normal or Riemannian systems. The 
physical significance of normal coordinates has also been discussed by other 
authors, who point out their correspondence to Minkowskian coordinates 
of special relativity(10).

Møller suggested that it would be possible to introduce coordinates 
along a geodesic such that = 0 along it, i. e. = 0 where no matter is 
present. This is physically reasonable, for it means that an observer falling 
freely in a gravitational field can introduce coordinates such that the effects 
of the gravitational field are approximately eliminated in his neighbourhood. 
It actually turns out to be possible.

In the appendix it is shown that for a geodesic in Riemannian space, V4, 
there exist coordinate systems such that for every point of the geodesic

= 0, i, k, / = 1, 2, 3, 4,

s (rh). M A x) - o, X, Â, /z - 1,2,3.

(41)

(42)
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The coordinates are called Fermi coordinates for a geodesic. The spatial 
coordinates x1, x2, x3 are just Riemannian or normal coordinates in the 
hvpcrsurface orthogonal to the geodesic since (see A16)

3 s (0, „ - (rti xA),„ + (O, ^). a+(O, a;i), « - ». (si)
(x2/z)

Putting i = i, one has

(-G, xâ), /z + €G, /zx), Â + å/j), x = 0 •

= ^ = 1,2,3, (43)

where is a vector at the geodesic in this surface and z is the arc length 
along a geodesic in the surface whose direction is specified by Z^. The fourth 
coordinate x4 is proportional to the arc length along the geodesic. For a 
time-like geodesic it can be taken as c times the proper time. This coordinate 
system is clearly time-orthogonal, and with the above choice of the fourth 
coordinate one finds that g4A = — 1. Thus

<74/1 = 0> <744 =- 1 (44)

so that the metric is
ds2-yftrdx>‘dx>’-(d.TA)2. (45)

The Fermi coordinates are a special case of geodesic coordinates. From 
(41) it is seen that

<7^ = °’ ^ = 0. (46)

Equation (40) therefore holds in this system of coordinates. Since (41) and 
(46) hold at every point of the geodesic, it follows that

(^ll)«4 = (^i, w)’4 = 0» 9ik, l,4 = 9™, 4 = (4?)

From the condition (42), satisfied by Fermi coordinates, it follows that

because x4 is proportional to the arc length along the geodesic. From (44) 
one has

g4fl = 0 and g44 = - 1. (48)

Using (44), (47) and (48), one finds from (40) that

/4 = ;x = 14 = 0
'4 — ‘4 u (49)

and
xir-[(/;,lÂ),M-(ra,1Â>.J/'‘?’- (50)

(52)
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From (41) it is seen that
(53) 

Equations (53) and (52) are the very equations satisfied by Riemannian 
coordinates in 3-spaee. From these it can be shown (see reference 6, ap­
pendix B) that

t, xâ), /Z = xâ), ( ' ('^4)

Hence, from (50) and (54) one has

/r = o.

Thus all the components of the complex t*  vanish along the geodesic.
Where R = 0, i. e. where no matter is present, or only an electromagnetic 

field, it is therefore possible to introduce along a geodesic coordinates such 
that the energy-momentum complex of the gravitational field vanishes on 
the geodesic.
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Appendix

In this appendix it will be shown that for a geodesic in an affinely con­
nected space An it is possible to introduce coordinate systems such that

= o

3 s /z a +rln, x = ° >
(xA/O

etc.

(A 1)

at every point of the curve. A complete proof for a general curve in A tv h as 
been given by Schouten(11). The present proof is a simplified version of 
his. Of course the results hold a fortiori for a Riemannian space VN.

Let the equation of the geodesic be given by

(‘-f'O), $ = ?(»)■ (A 2)

Consider the hypersurface orthogonal to the geodesic at the point Po 
with coordinates . For a neighbouring point Qo in this surface, with co­
ordinates , there is a unique geodesic passing through Po and ()0. Its direc­
tion at Po is given by the vector

(A3)

where z is an affine parameter on the geodesic. In a Riemannian space, 
z can always be taken as the arc length along the (non-null) geodesic.

The equation of the geodesic through Po and Qo is

df
dz2 + kl dz dz = 0. (A4)

One may expand the coordinates g1 of Qo in a series as follows, putting 
z = 0 at Po :
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/rf2£\ 2
\^2/o

Differentiation of (A4) gives

where

d3g 
hz*

d£k dg dg71 
dz dz dz

{ dg1 dg dgn 
Iklmlz hz dz ’

I kim ~ *$  W kl)
(kim)

S is a symmetrizing operator defined by

T ^mkl T Imk + mlk + ^kml + Plkm) •

(A5)

(A6)

(A7)

(A8)

In general, S is the sum of all p\
(nin2.. ,nP)

permutations of zi1n2. . divided by pi.
Then one finds that

quantities Pni7ll_nil with all

where

'l’he coordinates g of any point Qo in the neighbourhood of the geodesic 
can then, by (A5), (A9) and (A3), be expressed by the equation

(AH)

For every point Qo there is one vector orthogonal to the geodesic. If one 
makes a parallel displacement along the geodesic from Po to a general 
point P, with coordinates g = fl (/), the vectors /q at Po go over into vectors 
ll al P orthogonal to the geodesic. The vector ll will depend on the parameter 
I of the geodesic and the parameters specifying the vector tg To every
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neighbouring point Q in the orthogonal hypersurface at P corresponds one 
vector giving the direction at of the geodesic from P to Q. The coordinates 

of the point Q can then be expressed by an equation corresponding to 
(All):

= f (/) + p z

-4, 1'1,mn {f‘(t)} /O'

(A 12)

Now at Po introduce A’ linearly independent vectors ■ ■ ■ ■,such
that is tangential to the geodesic and /z = 1,2, . N- 1 are orthogonal 
to it. The vectors span the orthogonal hypersurface at Po so that the vectors 
tl0 can be expressed in terms of them :

= // = 1,2, . . ,,AT- 1. (A 13)

The will depend on the parameters specifying the vector tl0. If one makes 
a parallel displacement along the geodesic from Po to P, the vectors e^, c’y 
go over into N linearly independent vectors e^, elN such that eN is tangential 
to the geodesic and the orthogonal to it. Thus the span the orthogonal 
hypersurface at P, and the u can be expressed in terms of them :

(A 14)

Unlike the vectors e^, the t/l are independent of t, depending only on the 
parameters specifying the original tlQ. This is due to the fact that the covariant 
derivatives of tl and vanish along the curve.

The coordinates of a point in the neighbourhood of the geodesic may 
then be expressed by the equation

- f (/)+4 (/) - ± r',{t} ? r $ (i) <■;,(/)

- 3-? rL 10 =31" f ‘s i (0 4 (0 4 (0

- Is 1° 4 (0 4 (0 «’s O 4(')----------

(A 15)

The F can thus be given in terms of the iV independent variables ztP, t.
The are known functions of t, depending on the initial choice of e®1. Along 
the curve the are functions of t only.
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Introducing a new coordinate system, defined by

(A 10)

we shall now show that the basis vectors of this system on the geodesic, 
i. e. the vectors along the coordinate curves or parametric lines, are the very 
vectors e^, ezN already delined at every point of the curve. The coordinate 
system (//) is then defined at every point of the geodesic.

Substituting from (A 10) in (A 15), one has

c - r <d)+</" 4 d «/' >ir od 4 ( ,,x )

~ 3 , di- rf $ (>,'v) <■' ('?') d (d

4! di».»{'"}>/'>?■ 4{'Is)4C's)$(Cv)4{'Is)-■■■■

(A 17)

the new coordinate system isThe equation of the geodesic in

(AIS)

(A 1 9)

(A 20)

,« = 1, 2, . ., A'- 1 .

fhe kth basis vector of the new

ordinate curve rf = const., i 4= b,

the kth co­system, i. e. the vector along

is -yr- , in the old coordinate system since drf J

which was to be shown.
Equation (A 17) expresses the general coordinates <5*  in terms of the 

particular coordinates 7]k. 'This equation holds for any coordinates in 
d?/ .

particular for = ?■/. In that case one has ek = ^~k = ôk so that equation 
(A 17) becomes

- 3, d’» < } »/*  -1?1 k«" < ‘iN ! ri" ’/’■ 'i- - ■ ■

d£ = , dvr. On the geodesic one finds trom (A17)
drf
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Differentiating this equation with respect to (r^, rf), (if1, r/v, rf), (if1, if, if, if), 
etc., and putting ?/*  = (), one finds that on the geodesic

0,
n,r, {^ } - 0 

ni f N V 
1 /IVQfi \ 'I J

etc.

(A21)

Along the curve = f (/) 
(k = /z, N is not a vector 
definition, i. e.

the covariant derivatives of the vectors ek vanish 
index, but a label for the different vectors), by

(A 22)

or, by equation (A 1 9),

In the coordinate system (rf) one has Therefore, in that system
(A 23) shows that on the curve

(A 24)

Now,

(A 25)

and
(A 26)rr r*  1 = s = s r1‘ /LtvQfJ ° L fWQ, a /«r oarJ ftvQ, o 1 /iv, o, a-

(flVQG) " (flVQO) (flVQG)

since 7^ = 0, one has

From (A21) and (A24) (A26) it is then found that

7^ = 0 i, k, 1=1,2,. .,N

$ rliv,Q = ^ fi, v,. . = 1,2,. . .,N-1 
(fli’Q'l
s = o° J fiv, Q, <7 V ’

ptp

(A27)

at all points of the curve. The coordinates for which the equations (A27) 
hold are called Fermi coordinates by Schouten, for Fermi was the first to 
show that coordinates can be chosen along any curve in Riemannian space 
Vrv so that 7^z = 9 at every point of the curve.
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